Данный тестовый вариант состоит из 30 тестовых заданий.

В книгу включены тестовые задания закрытого и открытого типа.

При решении тестовых заданий закрытого типа необходимо из 4-х предложенных вариантов ответов выбрать только один и в листе ответов на соответствующей номеру задания строке написать букву (А, В, С или D), соответствующую выбранному ответу.

В тестовых заданиях открытого типа Ваш ответ необходимо написать четко и ясно в лист ответов на соответствующую номеру задания строку.

- **1.** Сколько целых $(x, y \in Z)$ пар (x; y) являются решением уравнения $|x| + |y| \le 10$?
- A) 181 B) 221 C) 261 D) 241
- **2.** Сколько пар простых чисел (x; y) удовлетворяют равенство $x^2 - 7x - 144 = y^2 - 25y$?

Ответ: _

3. Центр правильного треугольника со стороной 6 m совпадает с центром круга, радиус которого 2 m (рисунок). Найдите сумму площадей (m²) частей треугольника (закрашенных на рисунке), выходящих за пределы круга.

- D) $2(2\sqrt{3} \pi)$
- A) $2(3\sqrt{2}-\pi)$ B) $2(3\sqrt{3}-\pi)$ C) $2(3\sqrt{3}+\pi)$
- **4.** Числовая последовательность 8; 16; 32; 56; . . . обладает таким свойством, что разности двух соседних членов составляют арифметическую прогрессию. Какой по счёту член данной последовательности равен 1688?

- A) 22 B) 21 C) 19 D) 20
- **5.** Вычислите: $\operatorname{tg} \frac{7\pi}{24} \cdot \operatorname{tg} \frac{\pi}{24} + \operatorname{tg} \frac{7\pi}{24} \operatorname{tg} \frac{\pi}{24}$
 - A) 0 B) $\sqrt{3}$ C) -1 D) 1
- 6. Найдите общее решение уравнения:

$$3\sin x + 2\sqrt{3}\cos\left(x + \frac{\pi}{6}\right) =$$

$$= \cos^2\left(x - \frac{\pi}{12}\right) + \sqrt{3}\sin\left(x + \frac{\pi}{3}\right)$$

Ответ: _

7. Решить неравенство:

$$\left(\log_{|x+0,5|} (0,25-x) - 1 \right) \cdot \log_{16} (0,25-x) > \log_4 \frac{0,25-x}{|x+0,5|}$$

$$A)\left(-\frac{3}{2}; -\frac{2}{3}\right) \cup \left(0; \frac{1}{8}\right)$$

$$B)\left(-2;-\frac{3}{2}\right)\cup\left(-\frac{1}{8};0\right)$$

$$C)\left(-2; -\frac{2}{3}\right) \cup \left(-\frac{1}{8}; 0\right)$$

$$D)\left(-2;-\frac{3}{2}\right)\cup\left(-\frac{3}{2};0\right)\cup\left(0;\frac{1}{8}\right)$$

- **8.** Сколько пар целых корней (x; y) имеет уравнение $5^{2x} - 3 \cdot 2^{2y} + 5^x \cdot 2^{y-1} = 2 \cdot 5^x + 2^{y+2}?$
 - A) 4 B) 3 C) 1 D) 2
- 9. Найдите значение выражения

$$\frac{1}{a\left(a-b\right)\left(a-c\right)} + \frac{1}{b\left(b-a\right)\left(b-c\right)} + \\ + \frac{1}{c\left(a-c\right)\left(b-c\right)}, \text{при } a = \frac{1}{2\sqrt{2}}, \, b = \frac{1}{\sqrt[3]{2}}, \, c = \frac{1}{\sqrt[6]{2}}$$

Ответ: ___

- **10.** Найдите сумму всех действительных корней уравнения $\frac{6x}{x^2+2x+3}+\frac{11x}{x^2+7x+3}=2.$
 - A) 0.5 B) -1 C) -0.5 D)
- 11. Решите уравнение в действительных числах:

$$x^3 + x^2 + x = -\frac{1}{3}$$

- A) $\frac{1}{\sqrt[3]{2}-1}$ B) $\frac{1}{\sqrt[3]{2}+1}$ C) $-\frac{1}{\sqrt[3]{2}-1}$
- D) $-\frac{1}{\sqrt[3]{2}+1}$
- **12.** Если числа x_1, x_2 и x_3 являются действительными корнями уравнения $3x^3-x^2-6x+2=0$, то найдите значение $\frac{1}{x_1-1}+\frac{1}{x_2-1}+\frac{1}{x_3-1}.$

Ответ: _

13. Решите неравенство:
$$2x^2 + 2x + 1 - \frac{15}{x^2 + x + 1} < 0$$

A) (-2;1) B) (-2;5) C) (0;1) D) (-2;0)

14. Периодическая и непрерывная функция f(x) определена на промежутке $(-\infty; +\infty)$, область её значений [-2; 2]. Если период функции f(x) равен 4, то найдите область значений функции y = -3f(2x-8) + 4.

A) [-2; 3] B) [-2; 10] C) [10; 13] D) [3; 5, 5]

15. Для функции f(x) выполняется условие $x\cdot f\left(\frac{x}{2x-1}\right)+f\left(x\right)=2.$ Найдите значение f(4).

Ответ: ____

16. Вычислите f'(3), если

$$f(2x-5) = \left(\lg^4 \frac{\pi}{x} - \log_2 \sin^2 \frac{\pi}{x} \right) \cdot (2x-8).$$

A) 4 B) -2 C) 0 D) 2

17. Найдите наибольшее значение функции:

$$y = \frac{x^2 + 2x + 9}{x^2 + 2x + 3, 5}$$

A) 3 B) 1 C) 3, 2 D) $2\frac{4}{7}$

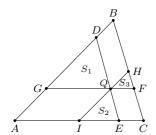
18. Вычислите: $\int_{9}^{10} (x-9)^8 \cdot x dx$.

A)
$$1\frac{1}{10}$$
 B) $1\frac{1}{8}$ C) $1\frac{1}{9}$ D) $1\frac{1}{11}$

19. Вычислить определенный интеграл:

$$\int_{0}^{\frac{\pi}{4}} \left(tg^{30}x + tg^{28}x \right) dx$$

A) $\frac{1}{28}$ B) $\frac{1}{29}$ C) $\frac{1}{30}$ D) $\frac{1}{31}$


20. Трапеция с углами при основании 60° и 30° описана около круга радиусом $3-\sqrt{3}$. Найдите периметр данной трапеции.

A) $9\sqrt{3}$ B) $12\sqrt{2}$ C) 12 D) 16

21. В треугольнике ABC биссектриса AD точкой пересечения биссектрис делится в отношении 6:5. Если AB=8 cm, AC=10 cm, то найдите длину стороны BC.

A) 12 cm B) 15 cm C) 14 cm D) 13 cm

22. На рисунке изображён треугольник ABC. Через произвольную точку Q, взятую внутри треугольника, проведены отрезки параллельно сторонам треугольника ($DE \parallel BC$, $IH \parallel AB$ и $GF \parallel AC$). Обозначим площади $S_{GQD} = S_1$, $S_{QIE} = S_2$ и $S_{QHF} = S_3$. Выразите площадь треугольника ABC через S_1 , S_2 и S_3 .

Ответ: _____

23. Прямоугольный параллелепипед, длины рёбер которого равны 12, 14 и 15, составлен из кубиков с длиной ребра равной 1. Сколько таких кубиков находятся на внешней поверхности этого параллелепипеда?

A) 962 B) 956 C) 960 D) 952

24. Площадь сечения, параллельного оси цилиндра, равна 24 и это сечение делит окружность основания в отношении 7:3. Найдите площадь боковой поверхности цилиндра.

A) $18\pi \left(\sqrt{5}+1\right)$ B) $12\pi \left(\sqrt{5}-1\right)$

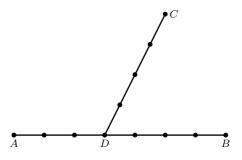
C) $9\pi (\sqrt{5} + 1)$ D) $24\pi (\sqrt{5} - 1)$

25. Дана пирамида с вершинами в точках A(2;0;0), B(0;3;0), C(0;0;4) и D(0;0;0). Найдите наименьшее расстояние от точки D до грани ABC.

Ответ: __

26. Перпендикулярные прямые l_1 и l_2 пересекаются в точке с координатами (0;a), где a>0. Прямая l_1 пересекает ось Ox в точке (-1,8;0), а прямая l_2 пересекает ось Ox в точке (3,2;0). Составьте уравнение прямой l_2 .

A) y = -0.75x + 2.4 B) y = x - 3.2 C) y = 0.75x - 2.4 D) y = -x + 3.2


27. Если $|\overrightarrow{a}| = 4$; $|\overrightarrow{b}| = 3$; $|\overrightarrow{c}| = 2$ и $\overrightarrow{a} \overrightarrow{b} - \overrightarrow{b} \overrightarrow{c} - \overrightarrow{a} \overrightarrow{c} = 12$, то найдите длину вектора $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$.

A) $\sqrt{52}$ B) $\sqrt{53}$ C) $\sqrt{51}$ D) $\sqrt{54}$

28. Сколько различных пятизначных чисел с не повторяющимися цифрами и оканчивающихся цифрой 5 можно составить при помощи цифр 0, 1, 2, 3, 4, 5, 6 и 7?

Ответ

29. На рисунке показаны отрезки AB и CD с отмеченными на них точками. Точка D лежит на отрезке AB. Какое наибольшее возможное количество различных треугольников с вершинами в данных точках можно построить?

Ответ:

30. Сколько подмножеств, не содержащих элемент a, но содержащих элемент b, имеет множество $A = \{a; b; c; d; e; f; h\}$?

Отрот